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Abstract—There are some design procedures that simplify fault 
diagnosis or detection in which faults can be automatically 
detected and/or corrected by use of coded inputs. In general, 
codes are commonly classified in terms of their ability to detect 
or correct classes of errors that affect some fixed number of bits 
in a word. Many codes have been developed that can be used in 
the design of self-checking circuits. Type of codes may vary 
depending on the type of circuits. For data-transmission busses, a 
parity-check code may be adequate, for other types of functions, 
however, we may wish to use a code by which the check bits of 
the result can be determined from the check bits of the operands. 
In this study, we developed a new Error Detection and 
Correction Code (ED/CC), called “Persec code”, which proved 
mathematically to be better in compare with other candidates 
and also adaptive to changing environments. Theoretically, this 
code is able to detect several errors, and correct more than one 
error of data-packet as well. This paper successfully 
demonstrates 1-error correcting scenario, via simulation and 
validation processes. 

I. INTRODUCTION 
During transmission of information via communication 

networks data may get corrupted due to physical/logical faults 
which would bring the whole system down to destructive 
failures. So, every communication system has to be facilitated 
with testing and fault tolerance equipments, to provide safe and 
sound communication streamlines. 

So far, many error detection and error correction codes, for 
different purposes, have been developed. To name some, Parity 
codes, Burger codes and Checksums[1-3] for error detection, 
Cyclic Redundancy codes[4,5], Hamming codes[6], Residue 
codes[1-3,7], Nordstorm-Robinson codes[8] and Turbo 
codes[9] for error correction, and BCH codes[10-12] and 
modified Residue codes[13,14] for multi error correction were 
developed. These codes may perform well in some cases, but 
not in all conditions and environments. However, due to steady 
increase of size, speed and complexity of data transmission the 
total efficiency has been reduced. Therefore, vital need for 
creation of new methods and revising the old techniques is 
commonly sensed [15].  

Generally, some of the faults are due to magnetic fields, 
electrical influences and climate impacts, such as thunders, 
hurricane, solar rays and etc. They can appear in both internal 
(e.g., inter node computer communications) and external 
communications (e.g., satellite communications, digital 
telecommunications or wireless networks). Traditionally, 

memories employ Single-Error Correcting and Double-Error 
Detecting (SEC-DED) methods [16]. But in 
telecommunications with large data-packets, systems need 
error correcting methods along with multi-error detecting 
techniques. Hence the task of every receiver system is to check 
errors and then fixing the problem by requesting for re-
transmission, correction or using other means. 

In this regard, many methods have been developed by 
different designers, which were good only in specific 
conditions and environments. However, an ED/CC is a 
mathematical function [2] that usually is implemented by 
hardware devices. One of the most popular error-detecting 
techniques is Parity code. Parity code is fast and efficient, 
because uses only one extra-bit (check bit) per data-packet 
(usually a byte) for detecting odd number of errors in the 
packet [17]. Hamming code, another well-known error-
correcting code, makes c extra check-bits per data-packet out 
of k information bits, where 2c = c + k + 1 [3,6]. The cost of 
these check-bits is very low in large data-packets but require 
more time for the correction processes. 

Since these codes need some extra-bits for the 
detection/correction processes which impose more time 
overhead, so designers depending on different conditions, 
nature and behavior of transmitter-receiver systems need to 
choose the best methods to increase the performance of the 
checking system. 

This paper is articulated as follows: In section 2 
terminology used for Persec code to understand this technique 
better is discussed. Persec code’s algorithm and its 
characteristics are clarified in section 3. The simulation results 
are analyzed in section 4, and finally presents the conclusion 
and future works in section V and VI. 

II. TERMINOLOGY 
During the Achamenian dynasty, the Persian empire had 

designed a special task force called “Sepah Javidan” (also 
called immortal/eternal army) which was comprised of a fixed 
number of ten thousands warriors. In times, within the battles 
some combatants might became dead or injured. For this, the 
commanders used to follow a strict discipline in which they 
were obliged to replace the slain soldiers with fresh forces of 
the reserved units and expedite the wounded warriors for 
medical treatments, after which they used to go back to their 
units as soon as they were healed. However, the total number 



of this task force was intact, fixed at ten thousands soldiers, and 
were ready for any operation in any place and at any time. 

Practically speaking the Persec code resembles closely to 
the procedure applied to the Immortal Army. Of this, the data 
(the army) that is going to be transmitted through 
communication medium, may get corrupted (injured warriors). 
After detecting the error(s), the receiver starts a procedure to 
repair the data by applying the appended extra bits (healing the 
wounded), otherwise it requests for retransmission of data 
(replacing demised soldiers). 

According to this scenario some important keywords need 
to be defined: 

Data-packet (P): The stream of data bits with a pre-
specified length that should be transferred from transmitter to 
receiver correctly. 

Data-length (L): The length of standard data-packet (not 
considering the check bits). 

Base (n): Based on the Persec algorithm, before coding, a 
base number must be selected (greater than 2) which plays an 
important role during the detection/correction process, like a 
sieve to detach the affected bits. Note that, selecting a base 1 
transforms our code to parity code, and any increase in base 
value would increase the correction rate, redundancy and 
calculation time. 

Redundancy (R): Total number of extra bits that helps 
detection/correction processes. 

Guard-bits (gb): A stream of n-1 ones (or zeroes) that must 
be added to the beginning and the end of data packet to avoid 
missing the data bits during coding procedure. 

Segment (S): Based on Persec code algorithm, in each 
iteration of coding process, data-packet is split into consequent 
segments of size n. These segments can have values between 0 
and 2n-1. 

Iteration (i): Persec algorithm performs its coding 
procedure n times (iterations) for each data-packet. 

Hot-bits (hb): The bits which considers error prone in each 
iteration. 

Retransmission-bits (rb): After detecting hot-bits in 
different iterations, three scenarios are possible: 

1. Only one bit is singled out as hot-bit, exactly n times (for 
all iterations). This bit is the one which contains the error and 
have to be corrected. 

2. The algorithm finds some suspected places, but none of 
them have been marked hot-bit for n times. This is the case of 
more than one bit error and we prove that, it is impossible for 
one bit error. 

3. More than one bit is considered hot-bit for n times. These 
are the retransmission-bit candidates which are requested to be 
retransmitted by sender. Number of these bits is much less than 
L and the error bit is certainly one of them. 

Distance (d): The distance between an error bit location and 
the end of its segment. 

All of the forementioned parameters would be tuned according 
to algorithm manipulation, required accuracy, and calculation time. 

III. PERSEC CODE 
Persec code employs the same approach as in parity code, 

in which data-packet (usually a byte) uses a check bit which 
makes the sum of 1’s odd/even [1]. Among the most well-
known error detection methods, parity code is the best choice 
for small data-packets in transmission and communication 
environments, but not in telecommunications. Further more, 
Hamming code, Residue codes and also BCH codes are 
popular in both small and large data intercommunications 
and/or telecommunications. But they impose a considerably 
large time overload for large data-packets [18,19].  

In turn, Persec code  is an improved code for large data-
packets in telecommunications. Since in telecommunications, 
usually we deal with large data-packets, so it works very well, 
but is not efficient for very small data-packets. 

Depending on conditions, some methods may not detect or 
correct the errors. But Persec code has the ability of always 
detecting the errors, although sometimes is not able to locate 
them exactly. Notwithstanding, it reports a few suspected bits 
within which one of them is surely the error. In this case it 
requests the sender to retransmit these few bits again.  

A.  Structure of the Code 
According to the algorithm, before coding the data in 

Persec code , a base number n should be selected. Afterward, 
the data-packet will be partitioned into several small boxes 
(segments) of n-bits.  

For instance, if we have a data-packet of 64 bits with a 
given base of 3, then it can be split into 21 3-bit segments and 
one bit is out. To hinder this problem, n-1 bits of 0 (or 1) 
should be added at the beginning and also the end of the data-
packet as guard-bits. Later these extra bits will be removed, 
after when the correction process in destination node is done. 
Hence, we have a data-packet of 68 bits, split into 22 segments 
and two redundant bits at both ends of packet. 

B. Coding in Persec Code  
Every n-bit segment of data-packet make a number in the 

range of 0 to 2n-1 (by n = 3, an octal number between 0 and 7) 
and the total frequency of each number is odd or even. Hence a 
parity bit for each of these 2n numbers (for n = 3, 8 numbers) 
can be assigned. For example, the following 64-bit data-packet 
is given, with a base of n = 3 and employing even parity 
checking we have:  

111011000010101100001101100111110101110001101011
0011001110001010 

Now, to align the given number, two (n-1) zeros is required 
to be attached to both ends (sides) of data-packet as guard-bits: 

001110110000101011000011011001111101011100011010
11001100111000101000 

Figure 1 illustrates the resultant 68-bit entity which is split 
into 3-bit segments and every segment represents an octal number. 



 
Figure 1.  Partitioning the data-packet and the corresponding octal numbers, 

(1st iteration). 

At this point, the quantity of every octal number, 
corresponding to these 22 3-bit segments (each in the range of 
0 to 7) is calculated. Table I represents the result of this 
calculation for 1st iteration, considering even parity checking. 
Here, we calculate the total of each individual octal number in 
the data-packet. Each sum can be either an odd or an even 
number, and applying even parity, just odd numbers can get 
signed. 

TABLE I.  FREQUENCY OF OCTAL NUMBERS AND THEIR PARITY BITS 
(TRANSMITTER SIDE). 

Iteration 1 Iteration 2 Iteration 3 Octal 
Number Sum Parity Sum Parity Sum Parity 

0 2 0 2 0 3 1 

1 4 0 1 1 3 1 

2 2 0 3 1 1 1 

3 6 0 3 1 2 0 

4 1 1 4 0 3 1 

5 2 0 2 0 5 1 

6 4 0 5 1 2 0 

7 1 1 2 0 3 1 

 

But it is not finished yet. This process must be repeated n 
times, shifting the segments to the right, one bit in each 
iteration. Figure 2 and Figure 3 show the results of 2nd and 3rd 
iterations of the example and also the parity bits besides their 
octal values have been shown in Table I (Iteration 2 and 3). 

Obviously, at the end of coding process with base n, we 
have n sets of 2n bits and therefore n×2n parity bits. 

 
Figure 2.  Partitioning the data-packet and the corresponding octal numbers, 

(2nd iteration). 

 
Figure 3.  Partitioning the data-packet and the corresponding octal numbers, 

(3rd iteration). 

C. Procedure of Error Detection 
To detect the errors, transmitter sends the data-packets with 

n×2n extra-bits to the destination. Receiver needs a system to 
reproduce the extra-bits and compare that with the transmitted 
extra-bits. If there is no difference, it means that no error has 
been occurred in the transmitted data-packet. But, if 
difference(s) was/were detected, then it means error has been 
occurred. If any error is occurred on one bit, then it will change 
the result of calculations at the receiver side. 

For example, if an error occurs on the bit number 9, the 
values of the redundant bits will change, as shown in Table II. 

TABLE II.  FREQUENCY OF OCTAL NUMBERS AND THEIR PARITY BITS 
(RECEIVER SIDE). 

Iteration 1 Iteration 2 Iteration 3 Octal 
Number Sum Parity Sum Parity Sum Parity 

0 1 0 2 0 2 0 

1 4 0 1 1 3 1 

2 2 0 3 1 2 0 

3 6 1 3 1 2 0 

4 2 0 3 1 3 1 

5 2 0 3 1 5 1 

6 4 0 5 1 2 0 

7 1 1 2 0 3 1 
 

When receiver compares these (old and new) parity sets, it 
can find out which octal number is changed to another. Table 
III shows the comparison results. 

This means that receiver finds out a 0 from the set of octal 
numbers on the first iteration has changed to 4 (or a 4 has changed 
to 0) then a 4 from the set of octal numbers of second iteration 
has changed to 5 (or a 5 has changed to 4) and also a 0 from the 
set of octal numbers of third iteration has changed to 2 (or a 2 
has changed to 0). All of these octal numbers and segments are 
suspected, but error has occurred only in one of them.  

D. The Error Correction Process 
Since the main focus of this paper is to study 1-bit error 

case, so this section presents solution for 1-bit error 
detection/correction. As mentioned before, errors would 
change the octal number of some segments. To locate the 
wrong bit, an XOR gate helps to find out which one is wrong.  



Figure 4.  Error Resolution Table with hot-bits and the error-bit. 

TABLE III.  COMPARISON OF THE RECEIVED AND REPRODUCED PARITY 
BITS 

Iteration 1 Iteration 2 Iteration 3 Octal 
Number Tx Rx Diff Tx Rx Diff Tx Rx Diff 

0 0 0 - 0 0 - 1 0 X 

1 0 0 - 1 1 - 1 1 - 

2 0 0 - 1 1 - 1 0 X 

3 0 1 X 1 1 - 0 0 - 

4 1 0 X 0 1 X 1 1 - 

5 0 0 - 0 1 X 1 1 - 

6 0 0 - 1 1 - 0 0 - 

7 1 1 - 0 0 - 1 1 - 

 
It should be noted that each octal number is represented by 

3 bits, and for altered octal numbers only one bit gets corrupted 
(for 1-bit error case). For instance, octal number 7(111) would 
change to one of these 6(110), 5(101), 3(011) octal numbers 
but it never changes to 0(000) which is different in three bits. 
Therefore, when an octal number changes to another number, 
the difference between both numbers is exactly one bit. By bit-
wise XORing of both octal numbers (original and corrupted 
numbers), we can find the incorrect bit number. For example, 
octal number 5(101) is correct and the transmitted corrupt 
information is 4(100), by XORing both numbers, XOR(101, 
100) = 001, everybody can figure that the bit number one is 
wrong. It means that the zeros in XOR’s output represent the 
correct bits and ones indicate the incorrect bit. Table IV 
presents all possible cases, using base 3 and exact location of 
error-bits.  

TABLE IV.  ALL POSSIBLE CASES AND THE EXACT ERROR PLACE IN EACH 
CASE, FOR BASE 3. 

0 1 2 3 4 5 6 7 
Numbers 

000 001 010 011 100 101 110 111 

0 000 - 001 010 - 100 - - - 

1 001 001 - - 010 - 100 - - 

2 010 010 - - 001 - - 100 - 

3 011 - 010 001 - 010 - - 100 

4 100 100 - - - - 001 010 - 

5 101 - 100 - - 001 - - 010 

6 110 - - 100 - 010 - - 001 

7 111 - - - 100 - 010 001 - 

 
Since every data-packet is comprised of several segments, and 

one octal number is assigned to each segment, so one data-packet 
may have more than one segment with the same octal value.  

In this case, for each iteration we have more than one 
suspected bit which are marked as hot-bit. To locate the 
corrupted bit precisely, we need to provide a table which is 
called “Error Resolution Table” in which all of the hbs for each 
iteration are reported. The error bit get marked in all iterations 
(maximum) which is crucial in error location process. Figure 4 
depicts the Error Resolution Table of the previous example and 
the correction process. 

During the correction process, sometimes we encounter the 
situation in which after finishing all iterations in error resolution 
process, we end-up with more than one suspected bits in the 
table, but the procedure is not able of locating the error bit.  

Figure 5.  Error Resolution Table, the hot-bits, and the suspected bits (retransmission-bits). 



To cope with this problem, the correction procedure 
performs a special process in which the receiver requests the 
sender to retransmit only the suspected bits. This approach 
saves time in compare with traditional techniques which 
require the retransmission of whole data-packet, and this is the 
key feature of our method. As an example, let assume in the 
previous example error affects the bit 25. Figure 5, 
demonstrates the error resolution table. After executing the 
procedure, we found that there are two suspected bits, bit 
number 16 and 25, which must be retransmitted. Since our 
method is designed for large data transmission, for a 2kb data 
packet and tentative 4 suspected bits, only the 4 bits need to be 
retransmitted which demonstrates the power of this robust 
time-saving technique. 

Later it will be illustrated that any increase in value of base 
(n) decreases the situations of retransmission-bits. Therefore, a 
larger base value increases the successful correction rate of 
Persec code. 

IV. ANALYSIS 

A. Redundant Bits 
A coded data-packet contains a block of k-bit information 

followed by a group of r check-bits. This would result in a 
block of L = k + r bits which is called a code-word, and is 
referred as [L, k] code [20]. As was shown in section 3, Persec 
code with base n in a similar way is a [L, k] code, which: 

 L = k + (n × 2n)  (1) 

Here r or its equivalent (n × 2n) is independent from k. 

B. Case of Retransmission Bits 
As was mentioned before, here we study the one bit error 

case. Of this, one can mathematically illustrate the statistical 
model and discover its probability function. Consequently, 
Persec parameters have been tuned with theoretically 
calculated values which best fit the real world applications 
(such as L and n). 

Suppose that the ith bit of data-packet has been affected in 
one iteration and some hot-bit(s) like the jth bit has (have) also 
been marked (Figure 6). 

  
Figure 6.  Error bit (ith) and the hot-bit (jth) position. 

Note that A and B are binary values of the segments and d 
is the distance of bits i and j from the right end of segments. A 
and B may differ in at most one bit, which can be detected 
conveniently, using XOR gates. That’s why the two segments 
have the same offset (shown by d in the figure), therefore the jth 
and ith bits are far from each other as much as an integer 
coefficient of n. Consequently, all of the segments with values 
A or B are suspected at the position of their dth bit --from the 
right end of the segment-- and all of these bits are marked as 
hot-bit. Recall that, we have only one error, so, by this method, 

only one A converts to a B. As a result, receiver computes 
frequency of A one unit less than of sender’s during 
construction of header. And for the B, receiver computes its 
frequency one unit more. So at the receiver’s header, in this 
iteration, the bits representing the parity of A and B are 
complemented. This is the way receiver detects the error. 

This process is applied to all iterations and eventually the 
bits which have been tagged as hot-bit for n times (in all of the 
iterations) are retransmission-bit candidates. By the way, these 
are the bits which potentially may be corrupted and one of 
them surly the error bit. 

For further analysis, suppose that the jth bit is one of the 
retransmission-bits but not the error bit. As depicted in Figure 
7, n-1 bits on left and right side of the jth bit must follow each 
other the same way as bits around the error bit (ith bit). 

 
Figure 7.  An error bit (ith) and a retransmission-bit (jth) would change in all 

of iterations. 

Note that k+1 is the iteration in which the ith bit changes its 
corresponding segment to the one next to its left side (same as 
jth bit). We can write the following equations according to the 
iterations shown before: 

1st iteration: 

{ } { }djndjndjdindindi CCCCCC +−++−+++−++−++ = ,...,,,...,, 2121  
2nd iteration: 

{ } { }132132 ,...,,,...,, ++−++−++++−++−++ = djndjndjdindindi CCCCCC  
… kth iteration: 

{ } { }1111 ,...,,,...,, −++−++ = njjjniii CCCCCC  
k+1st iteration: 

{ } { }jnjnjinini CCCCCC ,...,,,...,, 2121 +−+−+−+− =  
… Last iteration: 

{ } { }1111 ,...,,,...,, −++−+−+−++−+−+ = djndjndjdindindi CCCCCC  
These equalities implies: 

 { } { }121121 ,...,,,...,, −++−+−−++−+− = njnjnjninini CCCCCC      (2) 

Except (probably) for the Ci and Cj. 

The result has been shown in Figure 8 which says that  
Al=Bl and Ar=Br: 



Figure 8.  Retransmission-bits constraints regarding to error position. 

C. The Probability of Single Error Correction 
According to previous section, n-1 bits before and after the 

retransmission-bits must be one by one equal to that of the 
exact error bit i.e. Al=Bl and Ar=Br when Al and Ar are binary 
stream values of the n-1 bits before and after the ith bit, and in 
the same way for the Bl and Br (Figure 8) such that:
 
       j = i ± m.n; m in {1,2,…}

 
            If the jth bit is a retransmission-bit, then Al=Bl and Ar=Br. 

                 The probability of facing such a case is: 

12
1:)Pr()Pr( −=== n

rrll BABA  

Therefore, B is not a retransmission-bit by the following 
probability: 
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Now, the probability function of not occurring such situation, 
for a L size data-packet using Persec with base n can be formulated: 
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This is the probability of correcting one bit error by the 
Persec code. Simulation results of Persec code strongly 
supports this formula, although the function has been a little 
overestimated (look at Table V to VIII). 

TABLE V.  BASE 4 RESULTS. 

Time 
(ms) rb  (%) C+ Rate 

(Simulation) 
C+ Rate 

(Formula) R (%) L (bit) 

0.3 1.76 61.35 62.35 50 128 

0.3 1.00 37.34 37.67 25 256 

0.6 0.64 13.75 13.77 12.5 512 

0.8 0.50 1.86 2.01 6.4 1 k 

2.6 0.40 0.00 0.00 0.8 8 k 

15.6 0.39 0.00 0.00 0.1 64 k 

TABLE VI.  BASE 6 RESULTS. 

Time 
(ms) rb  (%) C+ Rate 

(Simulation) 
C+ Rate 

(Formula) R (%) L (bit) 

0.4 1.57 98.32 98.16 300 128 

0.6 0.79 96.05 96.07 150 256 

1.0 0.40 92.14 92.21 75 512 

1.7 0.21 85.28 85.11 38.4 1 k 

5.1 0.03 28.02 27.24 4.8 8 k 

19.9 0.02 0.00 0.00 0.6 64 k 

TABLE VII.  BASE 8 RESULTS. 

Time 
(ms) rb  (%) C+ Rate 

(Simulation) 
C+ Rate 

(Formula) R (%) L (bit)

2.7 0.20 99.31 99.25 204.8 1 k 

4.2 0.10 98.39 98.50 102.4 2 k 

7.2 0.05 96.93 97.01 51.2 4 k 

11.5 0.03 93.65 94.09 25.6 8 k 

16.9 0.01 88.37 88.52 12.8 16 k 

24.1 0.01 78.31 78.35 6.4 32 k 

35.0 0.00 60.89 61.37 3.2 64 k 

TABLE VIII.  BASE 10 RESULTS. 

Time 
(ms) rb RateC+ Rate 

(Simulation) 
C+ Rate 

(Formula) R % L (bit)

5.4 0.19 99.98 99.96 1024 1 k 

7.3 0.10 99.97 99.92 512 2 k 

10.9 0.05 99.86 99.85 256 4 k 

18.0 0.02 99.68 99.70 128 8 k 

30.5 0.01 99.41 99.39 64 16 k 

50.8 0.01 99.62 98.79 32 32 k 

77.9 0.00 97.56 97.59 16 64 k 
 

D. Simulation and Statistic Results 
Every ED/CC algorithm may fall into one of  the following 

scenarios: 

1) Always detects and corrects errors, correctly. 
2) Detects and correct errors, incorrectly (mistakes). 
3) Always detects, but can not correct errors (D+ C-). 

 
As it can be seen, according to theoretical analysis and also 

the simulation results, considering only one bit error, the Persec 
code performs great with a successful hit-rate of 100 percent of 
precision. Furthermore, the results show that the correction rate 
conforms with the outcomes of the proposed formulas. 
Simulations have been run on an Intel Pentium IV (Centrino - 
1.7GHz) with 512MB RAM. 

Figure 9 shows correction rate of the Persec code for the bases 
ranging from 4 to 10 and denotes that by increasing the base and 
decreasing the data-length, the precision of the method is increased. 

 

Figure 9.  The probabilities of error correction. 



V. CONCLUSION 
In this paper an innovative method has been proposed for 

detecting and correcting errors which is inspired from parity 
codes, but can correct the error. The most important 
characteristic of this method is detection of hot-bits and 
recommending a set of retransmission-bits according to the 
value of base. This process is done when the method fails to 
correct the error and specifies a few bits to be retransmitted 
instead. 

Persec code has the following advantages: 

• It is an independent code, there is no relation between 
the length of packets and check-bits. 

• It can detect burst errors. 

• It can find more than one error. 

• Its hardware implementation is easy. 

• It is flexible to versatile conditions and different 
precisions. 

• For the long data it requires small amount of 
redundancy. 

• It offers real-time detection and fast correction. Figure 
10 illustrates process times of Persec code for bases 
from 4 to 10 and the covered space for various data-
lengths in contrast with Hamming and BCH codes 
[Hamming and BCH procedures has been reported 
from Reff. 21]. 

 

 

Figure 10.  Process time of Persec code, Hamming code and BCH codes. 

Its disadvantages are: 

• On short data-packets, it imposes large time overhead. 

• There is no guarantee for full correction. 

• Guard-bits need protection against faults. 

VI. FUTURE WORKS 
The following topics can be studied for further research in 

the subject: 

• Research on multi-error correction 

• Mathematical computation of hamming distance  

• Finding the maximum fault coverage 

• Finding the best values for parameters which best fit 
the situations. 
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