
A New Error Correction Code

Amir Shahab Shahmiri, Sobhan Naderi Parizi, Mohammad Kazem Akbari
 Computer Engineering & Information Technology Department

Amirkabir University of Technology,
Tehran, Iran

amir@shahmiri.ir, {snaderi, akbarif}@aut.ac.ir

Abstract—There are some design procedures that simplify fault
diagnosis or detection in which faults can be automatically
detected and/or corrected by use of coded inputs. In general,
codes are commonly classified in terms of their ability to detect
or correct classes of errors that affect some fixed number of bits
in a word. Many codes have been developed that can be used in
the design of self-checking circuits. Type of codes may vary
depending on the type of circuits. For data-transmission busses, a
parity-check code may be adequate, for other types of functions,
however, we may wish to use a code by which the check bits of
the result can be determined from the check bits of the operands.
In this study, we developed a new Error Detection and
Correction Code (ED/CC), called “Persec code”, which proved
mathematically to be better in compare with other candidates
and also adaptive to changing environments. Theoretically, this
code is able to detect several errors, and correct more than one
error of data-packet as well. This paper successfully
demonstrates 1-error correcting scenario, via simulation and
validation processes.

I. INTRODUCTION
During transmission of information via communication

networks data may get corrupted due to physical/logical faults
which would bring the whole system down to destructive
failures. So, every communication system has to be facilitated
with testing and fault tolerance equipments, to provide safe and
sound communication streamlines.

So far, many error detection and error correction codes, for
different purposes, have been developed. To name some, Parity
codes, Burger codes and Checksums[1-3] for error detection,
Cyclic Redundancy codes[4,5], Hamming codes[6], Residue
codes[1-3,7], Nordstorm-Robinson codes[8] and Turbo
codes[9] for error correction, and BCH codes[10-12] and
modified Residue codes[13,14] for multi error correction were
developed. These codes may perform well in some cases, but
not in all conditions and environments. However, due to steady
increase of size, speed and complexity of data transmission the
total efficiency has been reduced. Therefore, vital need for
creation of new methods and revising the old techniques is
commonly sensed [15].

Generally, some of the faults are due to magnetic fields,
electrical influences and climate impacts, such as thunders,
hurricane, solar rays and etc. They can appear in both internal
(e.g., inter node computer communications) and external
communications (e.g., satellite communications, digital
telecommunications or wireless networks). Traditionally,

memories employ Single-Error Correcting and Double-Error
Detecting (SEC-DED) methods [16]. But in
telecommunications with large data-packets, systems need
error correcting methods along with multi-error detecting
techniques. Hence the task of every receiver system is to check
errors and then fixing the problem by requesting for re-
transmission, correction or using other means.

In this regard, many methods have been developed by
different designers, which were good only in specific
conditions and environments. However, an ED/CC is a
mathematical function [2] that usually is implemented by
hardware devices. One of the most popular error-detecting
techniques is Parity code. Parity code is fast and efficient,
because uses only one extra-bit (check bit) per data-packet
(usually a byte) for detecting odd number of errors in the
packet [17]. Hamming code, another well-known error-
correcting code, makes c extra check-bits per data-packet out
of k information bits, where 2c = c + k + 1 [3,6]. The cost of
these check-bits is very low in large data-packets but require
more time for the correction processes.

Since these codes need some extra-bits for the
detection/correction processes which impose more time
overhead, so designers depending on different conditions,
nature and behavior of transmitter-receiver systems need to
choose the best methods to increase the performance of the
checking system.

This paper is articulated as follows: In section 2
terminology used for Persec code to understand this technique
better is discussed. Persec code’s algorithm and its
characteristics are clarified in section 3. The simulation results
are analyzed in section 4, and finally presents the conclusion
and future works in section V and VI.

II. TERMINOLOGY
During the Achamenian dynasty, the Persian empire had

designed a special task force called “Sepah Javidan” (also
called immortal/eternal army) which was comprised of a fixed
number of ten thousands warriors. In times, within the battles
some combatants might became dead or injured. For this, the
commanders used to follow a strict discipline in which they
were obliged to replace the slain soldiers with fresh forces of
the reserved units and expedite the wounded warriors for
medical treatments, after which they used to go back to their
units as soon as they were healed. However, the total number

of this task force was intact, fixed at ten thousands soldiers, and
were ready for any operation in any place and at any time.

Practically speaking the Persec code resembles closely to
the procedure applied to the Immortal Army. Of this, the data
(the army) that is going to be transmitted through
communication medium, may get corrupted (injured warriors).
After detecting the error(s), the receiver starts a procedure to
repair the data by applying the appended extra bits (healing the
wounded), otherwise it requests for retransmission of data
(replacing demised soldiers).

According to this scenario some important keywords need
to be defined:

Data-packet (P): The stream of data bits with a pre-
specified length that should be transferred from transmitter to
receiver correctly.

Data-length (L): The length of standard data-packet (not
considering the check bits).

Base (n): Based on the Persec algorithm, before coding, a
base number must be selected (greater than 2) which plays an
important role during the detection/correction process, like a
sieve to detach the affected bits. Note that, selecting a base 1
transforms our code to parity code, and any increase in base
value would increase the correction rate, redundancy and
calculation time.

Redundancy (R): Total number of extra bits that helps
detection/correction processes.

Guard-bits (gb): A stream of n-1 ones (or zeroes) that must
be added to the beginning and the end of data packet to avoid
missing the data bits during coding procedure.

Segment (S): Based on Persec code algorithm, in each
iteration of coding process, data-packet is split into consequent
segments of size n. These segments can have values between 0
and 2n-1.

Iteration (i): Persec algorithm performs its coding
procedure n times (iterations) for each data-packet.

Hot-bits (hb): The bits which considers error prone in each
iteration.

Retransmission-bits (rb): After detecting hot-bits in
different iterations, three scenarios are possible:

1. Only one bit is singled out as hot-bit, exactly n times (for
all iterations). This bit is the one which contains the error and
have to be corrected.

2. The algorithm finds some suspected places, but none of
them have been marked hot-bit for n times. This is the case of
more than one bit error and we prove that, it is impossible for
one bit error.

3. More than one bit is considered hot-bit for n times. These
are the retransmission-bit candidates which are requested to be
retransmitted by sender. Number of these bits is much less than
L and the error bit is certainly one of them.

Distance (d): The distance between an error bit location and
the end of its segment.

All of the forementioned parameters would be tuned according
to algorithm manipulation, required accuracy, and calculation time.

III. PERSEC CODE
Persec code employs the same approach as in parity code,

in which data-packet (usually a byte) uses a check bit which
makes the sum of 1’s odd/even [1]. Among the most well-
known error detection methods, parity code is the best choice
for small data-packets in transmission and communication
environments, but not in telecommunications. Further more,
Hamming code, Residue codes and also BCH codes are
popular in both small and large data intercommunications
and/or telecommunications. But they impose a considerably
large time overload for large data-packets [18,19].

In turn, Persec code is an improved code for large data-
packets in telecommunications. Since in telecommunications,
usually we deal with large data-packets, so it works very well,
but is not efficient for very small data-packets.

Depending on conditions, some methods may not detect or
correct the errors. But Persec code has the ability of always
detecting the errors, although sometimes is not able to locate
them exactly. Notwithstanding, it reports a few suspected bits
within which one of them is surely the error. In this case it
requests the sender to retransmit these few bits again.

A. Structure of the Code
According to the algorithm, before coding the data in

Persec code , a base number n should be selected. Afterward,
the data-packet will be partitioned into several small boxes
(segments) of n-bits.

For instance, if we have a data-packet of 64 bits with a
given base of 3, then it can be split into 21 3-bit segments and
one bit is out. To hinder this problem, n-1 bits of 0 (or 1)
should be added at the beginning and also the end of the data-
packet as guard-bits. Later these extra bits will be removed,
after when the correction process in destination node is done.
Hence, we have a data-packet of 68 bits, split into 22 segments
and two redundant bits at both ends of packet.

B. Coding in Persec Code
Every n-bit segment of data-packet make a number in the

range of 0 to 2n-1 (by n = 3, an octal number between 0 and 7)
and the total frequency of each number is odd or even. Hence a
parity bit for each of these 2n numbers (for n = 3, 8 numbers)
can be assigned. For example, the following 64-bit data-packet
is given, with a base of n = 3 and employing even parity
checking we have:

111011000010101100001101100111110101110001101011
0011001110001010

Now, to align the given number, two (n-1) zeros is required
to be attached to both ends (sides) of data-packet as guard-bits:

001110110000101011000011011001111101011100011010
11001100111000101000

Figure 1 illustrates the resultant 68-bit entity which is split
into 3-bit segments and every segment represents an octal number.

Figure 1. Partitioning the data-packet and the corresponding octal numbers,

(1st iteration).

At this point, the quantity of every octal number,
corresponding to these 22 3-bit segments (each in the range of
0 to 7) is calculated. Table I represents the result of this
calculation for 1st iteration, considering even parity checking.
Here, we calculate the total of each individual octal number in
the data-packet. Each sum can be either an odd or an even
number, and applying even parity, just odd numbers can get
signed.

TABLE I. FREQUENCY OF OCTAL NUMBERS AND THEIR PARITY BITS
(TRANSMITTER SIDE).

Iteration 1 Iteration 2 Iteration 3 Octal
Number Sum Parity Sum Parity Sum Parity

0 2 0 2 0 3 1

1 4 0 1 1 3 1

2 2 0 3 1 1 1

3 6 0 3 1 2 0

4 1 1 4 0 3 1

5 2 0 2 0 5 1

6 4 0 5 1 2 0

7 1 1 2 0 3 1

But it is not finished yet. This process must be repeated n
times, shifting the segments to the right, one bit in each
iteration. Figure 2 and Figure 3 show the results of 2nd and 3rd
iterations of the example and also the parity bits besides their
octal values have been shown in Table I (Iteration 2 and 3).

Obviously, at the end of coding process with base n, we
have n sets of 2n bits and therefore n×2n parity bits.

Figure 2. Partitioning the data-packet and the corresponding octal numbers,

(2nd iteration).

Figure 3. Partitioning the data-packet and the corresponding octal numbers,

(3rd iteration).

C. Procedure of Error Detection
To detect the errors, transmitter sends the data-packets with

n×2n extra-bits to the destination. Receiver needs a system to
reproduce the extra-bits and compare that with the transmitted
extra-bits. If there is no difference, it means that no error has
been occurred in the transmitted data-packet. But, if
difference(s) was/were detected, then it means error has been
occurred. If any error is occurred on one bit, then it will change
the result of calculations at the receiver side.

For example, if an error occurs on the bit number 9, the
values of the redundant bits will change, as shown in Table II.

TABLE II. FREQUENCY OF OCTAL NUMBERS AND THEIR PARITY BITS
(RECEIVER SIDE).

Iteration 1 Iteration 2 Iteration 3 Octal
Number Sum Parity Sum Parity Sum Parity

0 1 0 2 0 2 0

1 4 0 1 1 3 1

2 2 0 3 1 2 0

3 6 1 3 1 2 0

4 2 0 3 1 3 1

5 2 0 3 1 5 1

6 4 0 5 1 2 0

7 1 1 2 0 3 1

When receiver compares these (old and new) parity sets, it
can find out which octal number is changed to another. Table
III shows the comparison results.

This means that receiver finds out a 0 from the set of octal
numbers on the first iteration has changed to 4 (or a 4 has changed
to 0) then a 4 from the set of octal numbers of second iteration
has changed to 5 (or a 5 has changed to 4) and also a 0 from the
set of octal numbers of third iteration has changed to 2 (or a 2
has changed to 0). All of these octal numbers and segments are
suspected, but error has occurred only in one of them.

D. The Error Correction Process
Since the main focus of this paper is to study 1-bit error

case, so this section presents solution for 1-bit error
detection/correction. As mentioned before, errors would
change the octal number of some segments. To locate the
wrong bit, an XOR gate helps to find out which one is wrong.

Figure 4. Error Resolution Table with hot-bits and the error-bit.

TABLE III. COMPARISON OF THE RECEIVED AND REPRODUCED PARITY
BITS

Iteration 1 Iteration 2 Iteration 3 Octal
Number Tx Rx Diff Tx Rx Diff Tx Rx Diff

0 0 0 - 0 0 - 1 0 X

1 0 0 - 1 1 - 1 1 -

2 0 0 - 1 1 - 1 0 X

3 0 1 X 1 1 - 0 0 -

4 1 0 X 0 1 X 1 1 -

5 0 0 - 0 1 X 1 1 -

6 0 0 - 1 1 - 0 0 -

7 1 1 - 0 0 - 1 1 -

It should be noted that each octal number is represented by

3 bits, and for altered octal numbers only one bit gets corrupted
(for 1-bit error case). For instance, octal number 7(111) would
change to one of these 6(110), 5(101), 3(011) octal numbers
but it never changes to 0(000) which is different in three bits.
Therefore, when an octal number changes to another number,
the difference between both numbers is exactly one bit. By bit-
wise XORing of both octal numbers (original and corrupted
numbers), we can find the incorrect bit number. For example,
octal number 5(101) is correct and the transmitted corrupt
information is 4(100), by XORing both numbers, XOR(101,
100) = 001, everybody can figure that the bit number one is
wrong. It means that the zeros in XOR’s output represent the
correct bits and ones indicate the incorrect bit. Table IV
presents all possible cases, using base 3 and exact location of
error-bits.

TABLE IV. ALL POSSIBLE CASES AND THE EXACT ERROR PLACE IN EACH
CASE, FOR BASE 3.

0 1 2 3 4 5 6 7
Numbers

000 001 010 011 100 101 110 111

0 000 - 001 010 - 100 - - -

1 001 001 - - 010 - 100 - -

2 010 010 - - 001 - - 100 -

3 011 - 010 001 - 010 - - 100

4 100 100 - - - - 001 010 -

5 101 - 100 - - 001 - - 010

6 110 - - 100 - 010 - - 001

7 111 - - - 100 - 010 001 -

Since every data-packet is comprised of several segments, and

one octal number is assigned to each segment, so one data-packet
may have more than one segment with the same octal value.

In this case, for each iteration we have more than one
suspected bit which are marked as hot-bit. To locate the
corrupted bit precisely, we need to provide a table which is
called “Error Resolution Table” in which all of the hbs for each
iteration are reported. The error bit get marked in all iterations
(maximum) which is crucial in error location process. Figure 4
depicts the Error Resolution Table of the previous example and
the correction process.

During the correction process, sometimes we encounter the
situation in which after finishing all iterations in error resolution
process, we end-up with more than one suspected bits in the
table, but the procedure is not able of locating the error bit.

Figure 5. Error Resolution Table, the hot-bits, and the suspected bits (retransmission-bits).

To cope with this problem, the correction procedure
performs a special process in which the receiver requests the
sender to retransmit only the suspected bits. This approach
saves time in compare with traditional techniques which
require the retransmission of whole data-packet, and this is the
key feature of our method. As an example, let assume in the
previous example error affects the bit 25. Figure 5,
demonstrates the error resolution table. After executing the
procedure, we found that there are two suspected bits, bit
number 16 and 25, which must be retransmitted. Since our
method is designed for large data transmission, for a 2kb data
packet and tentative 4 suspected bits, only the 4 bits need to be
retransmitted which demonstrates the power of this robust
time-saving technique.

Later it will be illustrated that any increase in value of base
(n) decreases the situations of retransmission-bits. Therefore, a
larger base value increases the successful correction rate of
Persec code.

IV. ANALYSIS

A. Redundant Bits
A coded data-packet contains a block of k-bit information

followed by a group of r check-bits. This would result in a
block of L = k + r bits which is called a code-word, and is
referred as [L, k] code [20]. As was shown in section 3, Persec
code with base n in a similar way is a [L, k] code, which:

 L = k + (n × 2n) (1)

Here r or its equivalent (n × 2n) is independent from k.

B. Case of Retransmission Bits
As was mentioned before, here we study the one bit error

case. Of this, one can mathematically illustrate the statistical
model and discover its probability function. Consequently,
Persec parameters have been tuned with theoretically
calculated values which best fit the real world applications
(such as L and n).

Suppose that the ith bit of data-packet has been affected in
one iteration and some hot-bit(s) like the jth bit has (have) also
been marked (Figure 6).

Figure 6. Error bit (ith) and the hot-bit (jth) position.

Note that A and B are binary values of the segments and d
is the distance of bits i and j from the right end of segments. A
and B may differ in at most one bit, which can be detected
conveniently, using XOR gates. That’s why the two segments
have the same offset (shown by d in the figure), therefore the jth
and ith bits are far from each other as much as an integer
coefficient of n. Consequently, all of the segments with values
A or B are suspected at the position of their dth bit --from the
right end of the segment-- and all of these bits are marked as
hot-bit. Recall that, we have only one error, so, by this method,

only one A converts to a B. As a result, receiver computes
frequency of A one unit less than of sender’s during
construction of header. And for the B, receiver computes its
frequency one unit more. So at the receiver’s header, in this
iteration, the bits representing the parity of A and B are
complemented. This is the way receiver detects the error.

This process is applied to all iterations and eventually the
bits which have been tagged as hot-bit for n times (in all of the
iterations) are retransmission-bit candidates. By the way, these
are the bits which potentially may be corrupted and one of
them surly the error bit.

For further analysis, suppose that the jth bit is one of the
retransmission-bits but not the error bit. As depicted in Figure
7, n-1 bits on left and right side of the jth bit must follow each
other the same way as bits around the error bit (ith bit).

Figure 7. An error bit (ith) and a retransmission-bit (jth) would change in all

of iterations.

Note that k+1 is the iteration in which the ith bit changes its
corresponding segment to the one next to its left side (same as
jth bit). We can write the following equations according to the
iterations shown before:

1st iteration:

{ } { }djndjndjdindindi CCCCCC +−++−+++−++−++ = ,...,,,...,, 2121
2nd iteration:

{ } { }132132 ,...,,,...,, ++−++−++++−++−++ = djndjndjdindindi CCCCCC
… kth iteration:

{ } { }1111 ,...,,,...,, −++−++ = njjjniii CCCCCC
k+1st iteration:

{ } { }jnjnjinini CCCCCC ,...,,,...,, 2121 +−+−+−+− =
… Last iteration:

{ } { }1111 ,...,,,...,, −++−+−+−++−+−+ = djndjndjdindindi CCCCCC
These equalities implies:

 { } { }121121 ,...,,,...,, −++−+−−++−+− = njnjnjninini CCCCCC (2)

Except (probably) for the Ci and Cj.

The result has been shown in Figure 8 which says that
Al=Bl and Ar=Br:

Figure 8. Retransmission-bits constraints regarding to error position.

C. The Probability of Single Error Correction
According to previous section, n-1 bits before and after the

retransmission-bits must be one by one equal to that of the
exact error bit i.e. Al=Bl and Ar=Br when Al and Ar are binary
stream values of the n-1 bits before and after the ith bit, and in
the same way for the Bl and Br (Figure 8) such that:

 j = i ± m.n; m in {1,2,…}

 If the jth bit is a retransmission-bit, then Al=Bl and Ar=Br.

 The probability of facing such a case is:

12
1:)Pr()Pr(−=== n

rrll BABA

Therefore, B is not a retransmission-bit by the following
probability:

21)2(

11:)Pr()Pr(
−

−≠+≠ n
rrll BABA (3)

Now, the probability function of not occurring such situation,
for a L size data-packet using Persec with base n can be formulated:

)2(

21)2(
11:)Pr(

−

− 







−=

n
L

nr φ (4)

This is the probability of correcting one bit error by the
Persec code. Simulation results of Persec code strongly
supports this formula, although the function has been a little
overestimated (look at Table V to VIII).

TABLE V. BASE 4 RESULTS.

Time
(ms) rb (%) C+ Rate

(Simulation)
C+ Rate

(Formula) R (%) L (bit)

0.3 1.76 61.35 62.35 50 128

0.3 1.00 37.34 37.67 25 256

0.6 0.64 13.75 13.77 12.5 512

0.8 0.50 1.86 2.01 6.4 1 k

2.6 0.40 0.00 0.00 0.8 8 k

15.6 0.39 0.00 0.00 0.1 64 k

TABLE VI. BASE 6 RESULTS.

Time
(ms) rb (%) C+ Rate

(Simulation)
C+ Rate

(Formula) R (%) L (bit)

0.4 1.57 98.32 98.16 300 128

0.6 0.79 96.05 96.07 150 256

1.0 0.40 92.14 92.21 75 512

1.7 0.21 85.28 85.11 38.4 1 k

5.1 0.03 28.02 27.24 4.8 8 k

19.9 0.02 0.00 0.00 0.6 64 k

TABLE VII. BASE 8 RESULTS.

Time
(ms) rb (%) C+ Rate

(Simulation)
C+ Rate

(Formula) R (%) L (bit)

2.7 0.20 99.31 99.25 204.8 1 k

4.2 0.10 98.39 98.50 102.4 2 k

7.2 0.05 96.93 97.01 51.2 4 k

11.5 0.03 93.65 94.09 25.6 8 k

16.9 0.01 88.37 88.52 12.8 16 k

24.1 0.01 78.31 78.35 6.4 32 k

35.0 0.00 60.89 61.37 3.2 64 k

TABLE VIII. BASE 10 RESULTS.

Time
(ms) rb RateC+ Rate

(Simulation)
C+ Rate

(Formula) R % L (bit)

5.4 0.19 99.98 99.96 1024 1 k

7.3 0.10 99.97 99.92 512 2 k

10.9 0.05 99.86 99.85 256 4 k

18.0 0.02 99.68 99.70 128 8 k

30.5 0.01 99.41 99.39 64 16 k

50.8 0.01 99.62 98.79 32 32 k

77.9 0.00 97.56 97.59 16 64 k

D. Simulation and Statistic Results
Every ED/CC algorithm may fall into one of the following

scenarios:

1) Always detects and corrects errors, correctly.
2) Detects and correct errors, incorrectly (mistakes).
3) Always detects, but can not correct errors (D+ C-).

As it can be seen, according to theoretical analysis and also

the simulation results, considering only one bit error, the Persec
code performs great with a successful hit-rate of 100 percent of
precision. Furthermore, the results show that the correction rate
conforms with the outcomes of the proposed formulas.
Simulations have been run on an Intel Pentium IV (Centrino -
1.7GHz) with 512MB RAM.

Figure 9 shows correction rate of the Persec code for the bases
ranging from 4 to 10 and denotes that by increasing the base and
decreasing the data-length, the precision of the method is increased.

Figure 9. The probabilities of error correction.

V. CONCLUSION
In this paper an innovative method has been proposed for

detecting and correcting errors which is inspired from parity
codes, but can correct the error. The most important
characteristic of this method is detection of hot-bits and
recommending a set of retransmission-bits according to the
value of base. This process is done when the method fails to
correct the error and specifies a few bits to be retransmitted
instead.

Persec code has the following advantages:

• It is an independent code, there is no relation between
the length of packets and check-bits.

• It can detect burst errors.

• It can find more than one error.

• Its hardware implementation is easy.

• It is flexible to versatile conditions and different
precisions.

• For the long data it requires small amount of
redundancy.

• It offers real-time detection and fast correction. Figure
10 illustrates process times of Persec code for bases
from 4 to 10 and the covered space for various data-
lengths in contrast with Hamming and BCH codes
[Hamming and BCH procedures has been reported
from Reff. 21].

Figure 10. Process time of Persec code, Hamming code and BCH codes.

Its disadvantages are:

• On short data-packets, it imposes large time overhead.

• There is no guarantee for full correction.

• Guard-bits need protection against faults.

VI. FUTURE WORKS
The following topics can be studied for further research in

the subject:

• Research on multi-error correction

• Mathematical computation of hamming distance

• Finding the maximum fault coverage

• Finding the best values for parameters which best fit
the situations.

REFERENCES
[1] John Barry W., Design and Analysis of Fault-Tolerant Digital Systems,

Addison-Wesley Publications, 1989.
[2] Lin Shu, An Introduction to Error-Correcting Codes, Prentice-Hall,

1970.
[3] Pless Vera, Introduction to the Theory of Error-Correcting Codes,

Prentice-Hall, 1990.
[4] Hui Li, Jan Lindskog, Goran Malmgren, Gyorgy Miklos, Fredrik Nilson

and Gunnar Rydnell, “Automatic repeat request (ARQ) mechanism in
HIPERLAN/2,” in Vehicular Technology Conference Proceedings, vol.
3 of VTC, (Tokyo), 2000, pp. 2093-2097.

[5] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,” in
Proceeding IRE, vol. 49, 1961, pp. 228-235.

[6] R. W. Hamming, “Error detecting and error correcting codes,” Bell
System Tech. J. 29, 1950, pp. 147-160.

[7] E. F. Assmus,H. F. Mattson, “On weights in quadratic-residue code”s,
Discrete Mathematics, Volume 3, Issues 1-3, 1972, pp. 1-20.

[8] A.W. Nordstorm and J. P. Robinson, “An optimum nonlinear code,”
Information control, 1967, pp. 284-287.

[9] Claude Berrou and Alain Glavieux, “Near optimum error correcting
coding and decoding: Turbo-codes,” IEEE Transactions on
Communication, 1996, Vol. 44, No. 10, pp. 1261–1271.

[10] Erl-Huei Lu, Yi-Chang Chen and Hsiao-Peng Wuu, “A complete
decoding algorithm for double-error-correcting primitive binary BCH
codes of odd m,” Information Processing Letters, Volume 51, Issue 3,
1994, pp. 117-120.

[11] T. A. Gulliver, W. Lin and F. Dehne, “Fast parallel decoding of double-
error-correcting binary BCH codes,” Applied Mathematics Letters,
Volume 11, Issue 6, 1998, pp. 11-14.

[12] Erl-Huei Lu, Shao-Wei Wub and Yi-Chang Chengb, “A decoding
algorithm for triple-error-correcting binary BCH codes”, Information
Processing Letters, Volume 80, Issue 6, 2001, pp. 299-303.

[13] F. Barsi and P. Maestrini, “A class of multiple-error-correcting
arithmetic residue codes,” Information and Control, Volume 36, Issue 1,
1978, pp. 28-41.

[14] R.K. Arora and Saroj Sharma, “Correction of multiple errors and
detection of additive overflow in residue code,” Information and
Control, Volume 39, Issue 1, 1978, pp. 46-54.

[15] Ronald Klein, Murali Varanasi and Larry Dunning, “Multiple error
detection/correction using the Nordstorm-Robinson code,” Proceedings
of 43rd IEEE Midwest Symposium on Circuits and Systems, 2000, pp.
254-257.

[16] Boris Polianskikh and Zeljko Zilic, “Induces error-correcting code for 2-
bit-per-cell multi-level Dram,” IEEE transaction on coding, 2000, pp.
352-355 .

[17] Tanenbaum Andrew S., Computer Networks, 4th Edition, Prentice-Hall,
2003.

[18] Shu Lin and E.J. Weldon, “Long BCH codes are bad,” Information and
Control Volume 11, Issue 4, 1967, pp. 445-451.

[19] G. Solomon, “Golay encoding/decoding via BCH-Hamming,”
Computers & Mathematics with Applications, Volume 39, Issue 11,
2000, pp. 103-108.

[20] Anand Srivastava, Subrat Kar and V.K. Jain, “Forward error correcting
codes in fiber-optic synchronouscode-division multiple access
networks,” Optics Communications, Vol. 202, 2002, pp. 287–296.

[21] R. H. Morelos Zaragoza, The Art of Error Correcting Coding, 2nd
Edition, John Wiley & Sons, 2006.

